Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On Sampling Edges Almost Uniformly (1706.09748v1)

Published 29 Jun 2017 in cs.CC, cs.DM, math.CO, and math.PR

Abstract: We consider the problem of sampling an edge almost uniformly from an unknown graph, $G = (V, E)$. Access to the graph is provided via queries of the following types: (1) uniform vertex queries, (2) degree queries, and (3) neighbor queries. We describe an algorithm that returns a random edge $e \in E$ using $\tilde{O}(n / \sqrt{\varepsilon m})$ queries in expectation, where $n = |V|$ is the number of vertices, and $m = |E|$ is the number of edges, such that each edge $e$ is sampled with probability $(1 \pm \varepsilon)/m$. We prove that our algorithm is optimal in the sense that any algorithm that samples an edge from an almost-uniform distribution must perform $\Omega(n / \sqrt{m})$ queries.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Talya Eden (27 papers)
  2. Will Rosenbaum (21 papers)
Citations (49)

Summary

We haven't generated a summary for this paper yet.