Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sampling Multiple Edges Efficiently (2008.08032v4)

Published 18 Aug 2020 in cs.DS

Abstract: We present a sublinear time algorithm that allows one to sample multiple edges from a distribution that is pointwise $\epsilon$-close to the uniform distribution, in an \emph{amortized-efficient} fashion. We consider the adjacency list query model, where access to a graph $G$ is given via degree and neighbor queries. The problem of sampling a single edge in this model has been raised by Eden and Rosenbaum (SOSA 18). Let $n$ and $m$ denote the number of vertices and edges of $G$, respectively. Eden and Rosenbaum provided upper and lower bounds of $\Theta*(n/\sqrt m)$ for sampling a single edge in general graphs (where $O*(\cdot)$ suppresses $\textrm{poly}(1/\epsilon)$ and $\textrm{poly}(\log n)$ dependencies). We ask whether the query complexity lower bound for sampling a single edge can be circumvented when multiple samples are required. That is, can we get an improved amortized per-sample cost if we allow a preprocessing phase? We answer in the affirmative. We present an algorithm that, if one knows the number of required samples $q$ in advance, has an overall cost that is sublinear in $q$, namely, $O*(\sqrt q \cdot(n/\sqrt m))$, which is strictly preferable to $O*(q\cdot (n/\sqrt m))$ cost resulting from $q$ invocations of the algorithm by Eden and Rosenbaum. Subsequent to a preliminary version of this work, T\v{e}tek and Thorup (arXiv, preprint) proved that this bound is essentially optimal.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Talya Eden (27 papers)
  2. Saleet Mossel (2 papers)
  3. Ronitt Rubinfeld (48 papers)
Citations (8)

Summary

We haven't generated a summary for this paper yet.