Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 88 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 73 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Kimi K2 190 tok/s Pro
2000 character limit reached

A decentralized approach to multi-agent MILPs: finite-time feasibility and performance guarantees (1706.08788v1)

Published 27 Jun 2017 in math.OC

Abstract: We address the optimal design of a large scale multi-agent system where each agent has discrete and/or continuous decision variables that need to be set so as to optimize the sum of linear local cost functions, in presence of linear local and global constraints. The problem reduces to a Mixed Integer Linear Program (MILP) that is here addressed according to a decentralized iterative scheme based on dual decomposition, where each agent determines its decision vector by solving a smaller MILP involving its local cost function and constraint given some dual variable, whereas a central unit enforces the global coupling constraint by updating the dual variable based on the tentative primal solutions of all agents. An appropriate tightening of the coupling constraint through iterations allows to obtain a solution that is feasible for the original MILP. The proposed approach is inspired by a recent method to the MILP approximate solution via dual decomposition and constraint tightening, and presents the advantage of guaranteeing feasibility in finite-time and providing better performance guarantees. The two approaches are compared on a numerical example on plug-in electric vehicles optimal charging.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.