Optimal Art Gallery Localization is NP-hard (1706.08016v3)
Abstract: Art Gallery Localization (AGL) is the problem of placing a set $T$ of broadcast towers in a simple polygon $P$ in order for a point to locate itself in the interior. For any point $p \in P$: for each tower $t \in T \cap V(p)$ (where $V(p)$ denotes the visibility polygon of $p$) the point $p$ receives the coordinates of $t$ and the Euclidean distance between $t$ and $p$. From this information $p$ can determine its coordinates. We study the computational complexity of AGL problem. We show that the problem of determining the minimum number of broadcast towers that can localize a point anywhere in a simple polygon $P$ is NP-hard. We show a reduction from Boolean Three Satisfiability problem to our problem and give a proof that the reduction takes polynomial time.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.