Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 29 tok/s
GPT-5 High 29 tok/s Pro
GPT-4o 102 tok/s
GPT OSS 120B 462 tok/s Pro
Kimi K2 181 tok/s Pro
2000 character limit reached

Split Lie-Rinehart algebras (1706.07084v1)

Published 21 Jun 2017 in math.RA

Abstract: We introduce the class of split Lie-Rinehart algebras as the natural extension of the one of split Lie algebras. We show that if $L$ is a tight split Lie-Rinehart algebra over an associative and commutative algebra $A,$ then $L$ and $A$ decompose as the orthogonal direct sums $L = \bigoplus_{i \in I}L_i$, $A = \bigoplus_{j \in J}A_j$, where any $L_i$ is a nonzero ideal of $L$, any $A_j$ is a nonzero ideal of $A$, and both decompositions satisfy that for any $i \in I$ there exists a unique $\tilde{i} \in J$ such that $A_{\tilde{i}}L_i \neq 0$. Furthermore any $L_i$ is a split Lie-Rinehart algebra over $A_{\tilde{i}}$. Also, under mild conditions, it is shown that the above decompositions of $L$ and $A$ are by means of the family of their, respective, simple ideals.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube