Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Moving Horizon Estimation for ARMAX process with t-Distribution Noise (1706.06509v1)

Published 20 Jun 2017 in cs.SY

Abstract: In this paper, instead of the usual Gaussian noise assumption, $t$-distribution noise is assumed. A Maximum Likelihood Estimator using the most recent N measurements is proposed for the Auto-Regressive-Moving-Average with eXogenous input (ARMAX) process with this assumption. The proposed estimator is robust to outliers because the `thick tail' of the t-distribution reduces the effect of large errors in the likelihood function. Instead of solving the resulting nonlinear estimator numerically, the Influence Function is used to formulate a computationally efficient recursive solution, which reduces to the traditional Moving Horizon Estimator when the noise is Gaussian. The formula for the variance of the estimate is derived. This formula shows explicitly how the variance of the estimate is affected by the number of measurements and noise variance. The simulation results show that the proposed estimator has smaller variance and is more robust to outliers than the Moving Window Least-Squares Estimator. For the same accuracy, the proposed estimator is an order of magnitude faster than the particle filter.

Summary

We haven't generated a summary for this paper yet.