Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Driver Action Prediction Using Deep (Bidirectional) Recurrent Neural Network (1706.02257v1)

Published 7 Jun 2017 in stat.ML, cs.AI, cs.CV, cs.LG, and cs.NE

Abstract: Advanced driver assistance systems (ADAS) can be significantly improved with effective driver action prediction (DAP). Predicting driver actions early and accurately can help mitigate the effects of potentially unsafe driving behaviors and avoid possible accidents. In this paper, we formulate driver action prediction as a timeseries anomaly prediction problem. While the anomaly (driver actions of interest) detection might be trivial in this context, finding patterns that consistently precede an anomaly requires searching for or extracting features across multi-modal sensory inputs. We present such a driver action prediction system, including a real-time data acquisition, processing and learning framework for predicting future or impending driver action. The proposed system incorporates camera-based knowledge of the driving environment and the driver themselves, in addition to traditional vehicle dynamics. It then uses a deep bidirectional recurrent neural network (DBRNN) to learn the correlation between sensory inputs and impending driver behavior achieving accurate and high horizon action prediction. The proposed system performs better than other existing systems on driver action prediction tasks and can accurately predict key driver actions including acceleration, braking, lane change and turning at durations of 5sec before the action is executed by the driver.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Oluwatobi Olabiyi (8 papers)
  2. Eric Martinson (2 papers)
  3. Vijay Chintalapudi (1 paper)
  4. Rui Guo (88 papers)
Citations (72)

Summary

We haven't generated a summary for this paper yet.