Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Evolving imputation strategies for missing data in classification problems with TPOT (1706.01120v2)

Published 4 Jun 2017 in cs.LG and stat.ML

Abstract: Missing data has a ubiquitous presence in real-life applications of machine learning techniques. Imputation methods are algorithms conceived for restoring missing values in the data, based on other entries in the database. The choice of the imputation method has an influence on the performance of the machine learning technique, e.g., it influences the accuracy of the classification algorithm applied to the data. Therefore, selecting and applying the right imputation method is important and usually requires a substantial amount of human intervention. In this paper we propose the use of genetic programming techniques to search for the right combination of imputation and classification algorithms. We build our work on the recently introduced Python-based TPOT library, and incorporate a heterogeneous set of imputation algorithms as part of the machine learning pipeline search. We show that genetic programming can automatically find increasingly better pipelines that include the most effective combinations of imputation methods, feature pre-processing, and classifiers for a variety of classification problems with missing data.

Citations (9)

Summary

We haven't generated a summary for this paper yet.