Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
38 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

See, Hear, and Read: Deep Aligned Representations (1706.00932v1)

Published 3 Jun 2017 in cs.CV

Abstract: We capitalize on large amounts of readily-available, synchronous data to learn a deep discriminative representations shared across three major natural modalities: vision, sound and language. By leveraging over a year of sound from video and millions of sentences paired with images, we jointly train a deep convolutional network for aligned representation learning. Our experiments suggest that this representation is useful for several tasks, such as cross-modal retrieval or transferring classifiers between modalities. Moreover, although our network is only trained with image+text and image+sound pairs, it can transfer between text and sound as well, a transfer the network never observed during training. Visualizations of our representation reveal many hidden units which automatically emerge to detect concepts, independent of the modality.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Yusuf Aytar (36 papers)
  2. Carl Vondrick (93 papers)
  3. Antonio Torralba (178 papers)
Citations (132)