Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Mean-Field Approximation: Information Inequalities, Algorithms, and Complexity (1802.06126v2)

Published 16 Feb 2018 in cs.LG, cond-mat.stat-mech, math-ph, math.CO, and math.MP

Abstract: The mean field approximation to the Ising model is a canonical variational tool that is used for analysis and inference in Ising models. We provide a simple and optimal bound for the KL error of the mean field approximation for Ising models on general graphs, and extend it to higher order Markov random fields. Our bound improves on previous bounds obtained in work in the graph limit literature by Borgs, Chayes, Lov\'asz, S\'os, and Vesztergombi and another recent work by Basak and Mukherjee. Our bound is tight up to lower order terms. Building on the methods used to prove the bound, along with techniques from combinatorics and optimization, we study the algorithmic problem of estimating the (variational) free energy for Ising models and general Markov random fields. For a graph $G$ on $n$ vertices and interaction matrix $J$ with Frobenius norm $| J |_F$, we provide algorithms that approximate the free energy within an additive error of $\epsilon n |J|_F$ in time $\exp(poly(1/\epsilon))$. We also show that approximation within $(n |J|_F){1-\delta}$ is NP-hard for every $\delta > 0$. Finally, we provide more efficient approximation algorithms, which find the optimal mean field approximation, for ferromagnetic Ising models and for Ising models satisfying Dobrushin's condition.

Citations (26)

Summary

We haven't generated a summary for this paper yet.