Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Divergence-free $H$(div)-FEM for time-dependent incompressible flows with applications to high Reynolds number vortex dynamics (1705.10176v2)

Published 29 May 2017 in math.NA, physics.comp-ph, and physics.flu-dyn

Abstract: In this article, we consider exactly divergence-free $H$(div)-conforming finite element methods for time-dependent incompressible viscous flow problems. This is an extension of previous research concerning divergence-free $H1$-conforming methods. For the linearised Oseen case, the first semi-discrete numerical analysis for time-dependent flows is presented here whereby special emphasis is put on pressure- and Reynolds-semi-robustness. For convection-dominated problems, the proposed method relies on a velocity jump upwind stabilisation which is not gradient-based. Complementing the theoretical results, $H$(div)-FEM are applied to the simulation of full nonlinear Navier-Stokes problems. Focussing on dynamic high Reynolds number examples with vortical structures, the proposed method proves to be capable of reliably handling the planar lattice flow problem, Kelvin-Helmholtz instabilities and freely decaying two-dimensional turbulence.

Summary

We haven't generated a summary for this paper yet.