Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Human Trajectory Prediction using Spatially aware Deep Attention Models (1705.09436v1)

Published 26 May 2017 in cs.LG and cs.AI

Abstract: Trajectory Prediction of dynamic objects is a widely studied topic in the field of artificial intelligence. Thanks to a large number of applications like predicting abnormal events, navigation system for the blind, etc. there have been many approaches to attempt learning patterns of motion directly from data using a wide variety of techniques ranging from hand-crafted features to sophisticated deep learning models for unsupervised feature learning. All these approaches have been limited by problems like inefficient features in the case of hand crafted features, large error propagation across the predicted trajectory and no information of static artefacts around the dynamic moving objects. We propose an end to end deep learning model to learn the motion patterns of humans using different navigational modes directly from data using the much popular sequence to sequence model coupled with a soft attention mechanism. We also propose a novel approach to model the static artefacts in a scene and using these to predict the dynamic trajectories. The proposed method, tested on trajectories of pedestrians, consistently outperforms previously proposed state of the art approaches on a variety of large scale data sets. We also show how our architecture can be naturally extended to handle multiple modes of movement (say pedestrians, skaters, bikers and buses) simultaneously.

Citations (88)

Summary

We haven't generated a summary for this paper yet.