Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Incorporating Depth into both CNN and CRF for Indoor Semantic Segmentation (1705.07383v4)

Published 21 May 2017 in cs.CV

Abstract: To improve segmentation performance, a novel neural network architecture (termed DFCN-DCRF) is proposed, which combines an RGB-D fully convolutional neural network (DFCN) with a depth-sensitive fully-connected conditional random field (DCRF). First, a DFCN architecture which fuses depth information into the early layers and applies dilated convolution for later contextual reasoning is designed. Then, a depth-sensitive fully-connected conditional random field (DCRF) is proposed and combined with the previous DFCN to refine the preliminary result. Comparative experiments show that the proposed DFCN-DCRF has the best performance compared with most state-of-the-art methods.

Citations (27)

Summary

We haven't generated a summary for this paper yet.