Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Depth Adaptive Deep Neural Network for Semantic Segmentation (1708.01818v2)

Published 5 Aug 2017 in cs.CV

Abstract: In this work, we present the depth-adaptive deep neural network using a depth map for semantic segmentation. Typical deep neural networks receive inputs at the predetermined locations regardless of the distance from the camera. This fixed receptive field presents a challenge to generalize the features of objects at various distances in neural networks. Specifically, the predetermined receptive fields are too small at a short distance, and vice versa. To overcome this challenge, we develop a neural network which is able to adapt the receptive field not only for each layer but also for each neuron at the spatial location. To adjust the receptive field, we propose the depth-adaptive multiscale (DaM) convolution layer consisting of the adaptive perception neuron and the in-layer multiscale neuron. The adaptive perception neuron is to adjust the receptive field at each spatial location using the corresponding depth information. The in-layer multiscale neuron is to apply the different size of the receptive field at each feature space to learn features at multiple scales. The proposed DaM convolution is applied to two fully convolutional neural networks. We demonstrate the effectiveness of the proposed neural networks on the publicly available RGB-D dataset for semantic segmentation and the novel hand segmentation dataset for hand-object interaction. The experimental results show that the proposed method outperforms the state-of-the-art methods without any additional layers or pre/post-processing.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Byeongkeun Kang (22 papers)
  2. Yeejin Lee (15 papers)
  3. Truong Q. Nguyen (22 papers)
Citations (58)

Summary

We haven't generated a summary for this paper yet.