Unified Fock space representation of fractional quantum Hall states (1705.07073v1)
Abstract: Many bosonic (fermionic) fractional quantum Hall states, such as Laughlin, Moore-Read and Read-Rezayi wavefunctions, belong to a special class of orthogonal polynomials: the Jack polynomials (times a Vandermonde determinant). This fundamental observation allows to point out two different recurrence relations for the coefficients of the permanent (Slater) decomposition of the bosonic (fermionic) states. Here we provide an explicit Fock space representation for these wavefunctions by introducing a two-body squeezing operator which represents them as a Jastrow operator applied to reference states, which are in general simple periodic one dimensional patterns. Remarkably, this operator representation is the same for bosons and fermions, and the different nature of the two recurrence relations is an outcome of particle statistics.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Collections
Sign up for free to add this paper to one or more collections.