Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Higher dimensional higher derivative $φ^4$ theory (1705.06983v2)

Published 19 May 2017 in hep-th

Abstract: We construct several towers of scalar quantum field theories with an $O(N)$ symmetry which have higher derivative kinetic terms. The Lagrangians in each tower are connected by lying in the same universality class at the $d$-dimensional Wilson-Fisher fixed point. Moreover the universal theory is studied using the large $N$ expansion and we determine $d$-dimensional critical exponents to $O(1/N2)$. We show that these new universality classes emerge naturally as solutions to the linear relation of the dimensions of the fields deduced from the underlying force-matter interaction of the universal critical theory. To substantiate the equivalence of the Lagrangians in each tower we renormalize each to several loop orders and show that the renormalization group functions are consistent with the large $N$ critical exponents. While we focus on the first two new towers of theories and renormalize the respective Lagrangians to $16$ and $18$ dimensions there are an infinite number of such towers. We also briefly discuss the conformal windows and the extension of the ideas to theories with spin-$\frac{1}{2}$ and spin-$1$ fields as well as the idea of lower dimension completeness.

Summary

We haven't generated a summary for this paper yet.