Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Critical $O(N)$ Models in $6-ε$ Dimensions (1404.1094v3)

Published 3 Apr 2014 in hep-th, cond-mat.stat-mech, and hep-ph

Abstract: We revisit the classic $O(N)$ symmetric scalar field theories in $d$ dimensions with interaction $(\phii \phii)2$. For $2<d\<4$ these theories flow to the Wilson-Fisher fixed points for any $N$. A standard large $N$ Hubbard-Stratonovich approach also indicates that, for $4<d\<6$, these theories possess unitary UV fixed points. We propose their alternate description in terms of a theory of $N+1$ massless scalars with the cubic interactions $\sigma \phi^i \phi^i$ and $\sigma^3$. Our one-loop calculation in $6-\epsilon$ dimensions shows that this theory has an IR stable fixed point at real values of the coupling constants for $N\>1038$. We show that the $1/N$ expansions of various operator scaling dimensions match the known results for the critical $O(N)$ theory continued to $d=6-\epsilon$. These results suggest that, for sufficiently large $N$, there are 5-dimensional unitary $O(N)$ symmetric interacting CFT's; they should be dual to the Vasiliev higher-spin theory in AdS$_6$ with alternate boundary conditions for the bulk scalar. Using these CFT's we provide a new test of the 5-dimensional $F$-theorem, and also find a new counterexample for the $C_T$ theorem.

Summary

We haven't generated a summary for this paper yet.