Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 34 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Multi-task Deep Neural Networks in Automated Protein Function Prediction (1705.04802v2)

Published 13 May 2017 in q-bio.QM

Abstract: In recent years, deep learning algorithms have outperformed the state-of-the art methods in several areas thanks to the efficient methods for training and for preventing overfitting, advancement in computer hardware, the availability of vast amount data. The high performance of multi-task deep neural networks in drug discovery has attracted the attention to deep learning algorithms in bioinformatics area. Here, we proposed a hierarchical multi-task deep neural network architecture based on Gene Ontology (GO) terms as a solution to protein function prediction problem and investigated various aspects of the proposed architecture by performing several experiments. First, we showed that there is a positive correlation between performance of the system and the size of training datasets. Second, we investigated whether the level of GO terms on GO hierarchy related to their performance. We showed that there is no relation between the depth of GO terms on GO hierarchy and their performance. In addition, we included all annotations to the training of a set of GO terms to investigate whether including noisy data to the training datasets change the performance of the system. The results showed that including less reliable annotations in training of deep neural networks increased the performance of the low performed GO terms, significantly. We evaluated the performance of the system using hierarchical evaluation method. Mathews correlation coefficient was calculated as 0.75, 0.49 and 0.63 for molecular function, biological process and cellular component categories, respectively. We showed that deep learning algorithms have a great potential in protein function prediction area. We plan to further improve the DEEPred by including other types of annotations from various biological data sources. We plan to construct DEEPred as an open access online tool.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube