Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 105 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Kimi K2 193 tok/s Pro
2000 character limit reached

Convolutions for localization operators (1705.03253v2)

Published 9 May 2017 in math.FA, math-ph, math.MP, and quant-ph

Abstract: Quantum harmonic analysis on phase space is shown to be linked with localization operators. The convolution between operators and the convolution between a function and an operator provide a conceptual framework for the theory of localization operators which is complemented by an appropriate Fourier transform, the Fourier-Wigner transform. We use Lieb's uncertainty principle to establish a sharp Hausdorff-Young inequality for the Fourier-Wigner transform. Noncommutative Tauberian theorems due to Werner allow us to extend results of Bayer and Gr\"ochenig on localization operators. Furthermore we show that the Arveson spectrum and the theory of Banach modules provide the abstract setting of quantum harmonic analysis.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.