Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Building Morphological Chains for Agglutinative Languages (1705.02314v1)

Published 5 May 2017 in cs.CL

Abstract: In this paper, we build morphological chains for agglutinative languages by using a log-linear model for the morphological segmentation task. The model is based on the unsupervised morphological segmentation system called MorphoChains. We extend MorphoChains log linear model by expanding the candidate space recursively to cover more split points for agglutinative languages such as Turkish, whereas in the original model candidates are generated by considering only binary segmentation of each word. The results show that we improve the state-of-art Turkish scores by 12% having a F-measure of 72% and we improve the English scores by 3% having a F-measure of 74%. Eventually, the system outperforms both MorphoChains and other well-known unsupervised morphological segmentation systems. The results indicate that candidate generation plays an important role in such an unsupervised log-linear model that is learned using contrastive estimation with negative samples.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Serkan Ozen (1 paper)
  2. Burcu Can (7 papers)
Citations (1)

Summary

We haven't generated a summary for this paper yet.