Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Computing isomorphisms and embeddings of finite fields (1705.01221v1)

Published 3 May 2017 in cs.SC, cs.MS, and math.NT

Abstract: Let $\mathbb{F}_q$ be a finite field. Given two irreducible polynomials $f,g$ over $\mathbb{F}_q$, with $\mathrm{deg} f$ dividing $\mathrm{deg} g$, the finite field embedding problem asks to compute an explicit description of a field embedding of $\mathbb{F}_q[X]/f(X)$ into $\mathbb{F}_q[Y]/g(Y)$. When $\mathrm{deg} f = \mathrm{deg} g$, this is also known as the isomorphism problem. This problem, a special instance of polynomial factorization, plays a central role in computer algebra software. We review previous algorithms, due to Lenstra, Allombert, Rains, and Narayanan, and propose improvements and generalizations. Our detailed complexity analysis shows that our newly proposed variants are at least as efficient as previously known algorithms, and in many cases significantly better. We also implement most of the presented algorithms, compare them with the state of the art computer algebra software, and make the code available as open source. Our experiments show that our new variants consistently outperform available software.

Citations (8)

Summary

We haven't generated a summary for this paper yet.