Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Factoring Polynomials over Finite Fields with Linear Galois Groups: An Additive Combinatorics Approach (2007.00512v2)

Published 1 Jul 2020 in math.NT and cs.CC

Abstract: Let $\tilde{f}(X)\in\mathbb{Z}[X]$ be a degree-$n$ polynomial such that $f(X):=\tilde{f}(X)\bmod p$ factorizes into $n$ distinct linear factors over $\mathbb{F}_p$. We study the problem of deterministically factoring $f(X)$ over $\mathbb{F}_p$ given $\tilde{f}(X)$. Under the generalized Riemann hypothesis (GRH), we give an improved deterministic algorithm that computes the complete factorization of $f(X)$ in the case that the Galois group of $\tilde{f}(X)$ is (permutation isomorphic to) a linear group $G\leq \mathrm{GL}(V)$ on the set $S$ of roots of $\tilde{f}(X)$, where $V$ is a finite-dimensional vector space over a finite field $\mathbb{F}$ and $S$ is identified with a subset of $V$. In particular, when $|S|=|V|{\Omega(1)}$, the algorithm runs in time polynomial in $n{\log n/(\log\log\log\log n){1/3}}$ and the size of the input, improving Evdokimov's algorithm. Our result also applies to a general Galois group $G$ when combined with a recent algorithm of the author. To prove our main result, we introduce a family of objects called linear $m$-schemes and reduce the problem of factoring $f(X)$ to a combinatorial problem about these objects. We then apply techniques from additive combinatorics to obtain an improved bound. Our techniques may be of independent interest.

Summary

We haven't generated a summary for this paper yet.