Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Brownian disks and the Brownian snake (1704.08987v2)

Published 28 Apr 2017 in math.PR

Abstract: We provide a new construction of the Brownian disks, which have been defined by Bettinelli and Miermont as scaling limits of quadrangulations with a boundary when the boundary size tends to infinity. Our method is very similar to the construction of the Brownian map, but it makes use of the positive excursion measure of the Brownian snake which has been introduced recently. This excursion measure involves a random continuous tree whose vertices are assigned nonnegative labels, which correspond to distances from the boundary in our approach to the Brownian disk. We provide several applications of our construction. In particular, we prove that the uniform measure on the boundary can be obtained as the limit of the suitably normalized volume measure on a small tubular neighborhood of the boundary. We also prove that connected components of the complement of the Brownian net are Brownian disks, as it was suggested in the recent work of Miller and Sheffield. Finally, we show that connected components of the complement of balls centered at the distinguished point of the Brownian map are independent Brownian disks, conditionally on their volumes and perimeters.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube