Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

New Hybridized Mixed Methods for Linear Elasticity and Optimal Multilevel Solvers (1704.07540v1)

Published 25 Apr 2017 in math.NA

Abstract: In this paper, we present a family of new mixed finite element methods for linear elasticity for both spatial dimensions $n=2,3$, which yields a conforming and strongly symmetric approximation for stress. Applying $\mathcal{P}_{k+1}-\mathcal{P}_k$ as the local approximation for the stress and displacement, the mixed methods achieve the optimal order of convergence for both the stress and displacement when $k \ge n$. For the lower order case $(n-2\le k<n)$, the stability and convergence still hold on some special grids. The proposed mixed methods are efficiently implemented by hybridization, which imposes the inter-element normal continuity of the stress by a Lagrange multiplier. Then, we develop and analyze multilevel solvers for the Schur complement of the hybridized system in the two dimensional case. Provided that no nearly singular vertex on the grids, the proposed solvers are proved to be uniformly convergent with respect to both the grid size and Poisson's ratio. Numerical experiments are provided to validate our theoretical results.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.