Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 102 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 30 tok/s
GPT-5 High 27 tok/s Pro
GPT-4o 110 tok/s
GPT OSS 120B 475 tok/s Pro
Kimi K2 203 tok/s Pro
2000 character limit reached

Leveraging Patient Similarity and Time Series Data in Healthcare Predictive Models (1704.07498v3)

Published 25 Apr 2017 in cs.AI and cs.LG

Abstract: Patient time series classification faces challenges in high degrees of dimensionality and missingness. In light of patient similarity theory, this study explores effective temporal feature engineering and reduction, missing value imputation, and change point detection methods that can afford similarity-based classification models with desirable accuracy enhancement. We select a piecewise aggregation approximation method to extract fine-grain temporal features and propose a minimalist method to impute missing values in temporal features. For dimensionality reduction, we adopt a gradient descent search method for feature weight assignment. We propose new patient status and directional change definitions based on medical knowledge or clinical guidelines about the value ranges for different patient status levels, and develop a method to detect change points indicating positive or negative patient status changes. We evaluate the effectiveness of the proposed methods in the context of early Intensive Care Unit mortality prediction. The evaluation results show that the k-Nearest Neighbor algorithm that incorporates methods we select and propose significantly outperform the relevant benchmarks for early ICU mortality prediction. This study makes contributions to time series classification and early ICU mortality prediction via identifying and enhancing temporal feature engineering and reduction methods for similarity-based time series classification.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.