Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Polynomial Norms (1704.07462v3)

Published 24 Apr 2017 in math.OC and cs.CC

Abstract: In this paper, we study polynomial norms, i.e. norms that are the $d{\text{th}}$ root of a degree-$d$ homogeneous polynomial $f$. We first show that a necessary and sufficient condition for $f{1/d}$ to be a norm is for $f$ to be strictly convex, or equivalently, convex and positive definite. Though not all norms come from $d{\text{th}}$ roots of polynomials, we prove that any norm can be approximated arbitrarily well by a polynomial norm. We then investigate the computational problem of testing whether a form gives a polynomial norm. We show that this problem is strongly NP-hard already when the degree of the form is 4, but can always be answered by testing feasibility of a semidefinite program (of possibly large size). We further study the problem of optimizing over the set of polynomial norms using semidefinite programming. To do this, we introduce the notion of r-sos-convexity and extend a result of Reznick on sum of squares representation of positive definite forms to positive definite biforms. We conclude with some applications of polynomial norms to statistics and dynamical systems.

Citations (12)

Summary

We haven't generated a summary for this paper yet.