Papers
Topics
Authors
Recent
Search
2000 character limit reached

Randomization, Sums of Squares, and Faster Real Root Counting for Tetranomials and Beyond

Published 13 Jan 2011 in math.AG and cs.CC | (1101.2642v1)

Abstract: Suppose f is a real univariate polynomial of degree D with exactly 4 monomial terms. We present an algorithm, with complexity polynomial in log D on average (relative to the stable log-uniform measure), for counting the number of real roots of f. The best previous algorithms had complexity super-linear in D. We also discuss connections to sums of squares and A-discriminants, including explicit obstructions to expressing positive definite sparse polynomials as sums of squares of few sparse polynomials. Our key tool is the introduction of efficiently computable chamber cones, bounding regions in coefficient space where the number of real roots of f can be computed easily. Much of our theory extends to n-variate (n+3)-nomials.

Citations (12)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.