Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 75 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 170 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Silting and cosilting classes in derived categories (1704.06484v1)

Published 21 Apr 2017 in math.RT and math.RA

Abstract: An important result in tilting theory states that a class of modules over a ring is a tilting class if and only if it is the Ext-orthogonal class to a set of compact modules of bounded projective dimension. Moreover, cotilting classes are precisely the resolving and definable subcategories of the module category whose Ext-orthogonal class has bounded injective dimension. In this article, we prove a derived counterpart of the statements above in the context of silting theory. Silting and cosilting complexes in the derived category of a ring generalise tilting and cotilting modules. They give rise to subcategories of the derived category, called silting and cosilting classes, which are part of both a t-structure and a co-t-structure. We characterise these subcategories: silting classes are precisely those which are intermediate and Ext-orthogonal classes to a set of compact objects, and cosilting classes are precisely the cosuspended, definable and co-intermediate subcategories of the derived category.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.