Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

AMTnet: Action-Micro-Tube Regression by End-to-end Trainable Deep Architecture (1704.04952v2)

Published 17 Apr 2017 in cs.CV

Abstract: Dominant approaches to action detection can only provide sub-optimal solutions to the problem, as they rely on seeking frame-level detections, to later compose them into "action tubes" in a post-processing step. With this paper we radically depart from current practice, and take a first step towards the design and implementation of a deep network architecture able to classify and regress whole video subsets, so providing a truly optimal solution of the action detection problem. In this work, in particular, we propose a novel deep net framework able to regress and classify 3D region proposals spanning two successive video frames, whose core is an evolution of classical region proposal networks (RPNs). As such, our 3D-RPN net is able to effectively encode the temporal aspect of actions by purely exploiting appearance, as opposed to methods which heavily rely on expensive flow maps. The proposed model is end-to-end trainable and can be jointly optimised for action localisation and classification in a single step. At test time the network predicts "micro-tubes" encompassing two successive frames, which are linked up into complete action tubes via a new algorithm which exploits the temporal encoding learned by the network and cuts computation time by 50%. Promising results on the J-HMDB-21 and UCF-101 action detection datasets show that our model does outperform the state-of-the-art when relying purely on appearance.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Suman Saha (49 papers)
  2. Gurkirt Singh (19 papers)
  3. Fabio Cuzzolin (57 papers)
Citations (70)

Summary

We haven't generated a summary for this paper yet.