Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Automatic Liver Lesion Detection using Cascaded Deep Residual Networks (1704.02703v2)

Published 10 Apr 2017 in cs.CV

Abstract: Automatic segmentation of liver lesions is a fundamental requirement towards the creation of computer aided diagnosis (CAD) and decision support systems (CDS). Traditional segmentation approaches depend heavily upon hand-crafted features and a priori knowledge of the user. As such, these methods are difficult to adopt within a clinical environment. Recently, deep learning methods based on fully convolutional networks (FCNs) have been successful in many segmentation problems primarily because they leverage a large labelled dataset to hierarchically learn the features that best correspond to the shallow visual appearance as well as the deep semantics of the areas to be segmented. However, FCNs based on a 16 layer VGGNet architecture have limited capacity to add additional layers. Therefore, it is challenging to learn more discriminative features among different classes for FCNs. In this study, we overcome these limitations using deep residual networks (ResNet) to segment liver lesions. ResNet contain skip connections between convolutional layers, which solved the problem of the training degradation of training accuracy in very deep networks and thereby enables the use of additional layers for learning more discriminative features. In addition, we achieve more precise boundary definitions through a novel cascaded ResNet architecture with multi-scale fusion to gradually learn and infer the boundaries of both the liver and the liver lesions. Our proposed method achieved 4th place in the ISBI 2017 Liver Tumor Segmentation Challenge by the submission deadline.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Lei Bi (62 papers)
  2. Jinman Kim (72 papers)
  3. Ashnil Kumar (14 papers)
  4. Dagan Feng (37 papers)
Citations (78)

Summary

We haven't generated a summary for this paper yet.