Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Graphical method for simplifying Bayesian Games (1704.02179v1)

Published 7 Apr 2017 in cs.GT and cs.MA

Abstract: If the influence diagram (ID) depicting a Bayesian game is common knowledge to its players then additional assumptions may allow the players to make use of its embodied irrelevance statements. They can then use these to discover a simpler game which still embodies both their optimal decision policies. However the impact of this result has been rather limited because many common Bayesian games do not exhibit sufficient symmetry to be fully and efficiently represented by an ID. The tree-based chain event graph (CEG) has been developed specifically for such asymmetric problems. By using these graphs rational players can make analogous deductions, assuming the topology of the CEG as common knowledge. In this paper we describe these powerful new techniques and illustrate them through an example modelling a game played between a government department and the provider of a website designed to radicalise vulnerable people.

Citations (6)

Summary

We haven't generated a summary for this paper yet.