Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Fine-Grained Hierarchy of Hard Problems in the Separated Fragment (1704.02145v1)

Published 7 Apr 2017 in cs.LO

Abstract: Recently, the separated fragment (SF) has been introduced and proved to be decidable. Its defining principle is that universally and existentially quantified variables may not occur together in atoms. The known upper bound on the time required to decide SF's satisfiability problem is formulated in terms of quantifier alternations: Given an SF sentence $\exists \vec{z} \forall \vec{x}1 \exists \vec{y}_1 \ldots \forall \vec{x}_n \exists \vec{y}_n . \psi$ in which $\psi$ is quantifier free, satisfiability can be decided in nondeterministic $n$-fold exponential time. In the present paper, we conduct a more fine-grained analysis of the complexity of SF-satisfiability. We derive an upper and a lower bound in terms of the degree of interaction of existential variables (short: degree)}---a novel measure of how many separate existential quantifier blocks in a sentence are connected via joint occurrences of variables in atoms. Our main result is the $k$-NEXPTIME-completeness of the satisfiability problem for the set $SF{\leq k}$ of all SF sentences that have degree $k$ or smaller. Consequently, we show that SF-satisfiability is non-elementary in general, since SF is defined without restrictions on the degree. Beyond trivial lower bounds, nothing has been known about the hardness of SF-satisfiability so far.

Citations (12)

Summary

We haven't generated a summary for this paper yet.