Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
43 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Complexity of Prenex Separation Logic with One Selector (1804.03556v2)

Published 10 Apr 2018 in cs.LO

Abstract: We first show that infinite satisfiability can be reduced to finite satisfiability for all prenex formulas of Separation Logic with $k\geq1$ selector fields ($\seplogk{k}$). Second, we show that this entails the decidability of the finite and infinite satisfiability problem for the class of prenex formulas of $\seplogk{1}$, by reduction to the first-order theory of one unary function symbol and unary predicate symbols. We also prove that the complexity is not elementary, by reduction from the first-order theory of one unary function symbol. Finally, we prove that the Bernays-Sch\"onfinkel-Ramsey fragment of prenex $\seplogk{1}$ formulae with quantifier prefix in the language $\exists\forall^$ is \pspace-complete. The definition of a complete (hierarchical) classification of the complexity of prenex $\seplogk{1}$, according to the quantifier alternation depth is left as an open problem.

Citations (2)

Summary

We haven't generated a summary for this paper yet.