Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Human-Aware Sensor Network Ontology: Semantic Support for Empirical Data Collection (1704.01806v1)

Published 6 Apr 2017 in cs.AI and cs.CY

Abstract: Significant efforts have been made to understand and document knowledge related to scientific measurements. Many of those efforts resulted in one or more high-quality ontologies that describe some aspects of scientific measurements, but not in a comprehensive and coherently integrated manner. For instance, we note that many of these high-quality ontologies are not properly aligned, and more challenging, that they have different and often conflicting concepts and approaches for encoding knowledge about empirical measurements. As a result of this lack of an integrated view, it is often challenging for scientists to determine whether any two scientific measurements were taken in semantically compatible manners, thus making it difficult to decide whether measurements should be analyzed in combination or not. In this paper, we present the Human-Aware Sensor Network Ontology that is a comprehensive alignment and integration of a sensing infrastructure ontology and a provenance ontology. HASNetO has been under development for more than one year, and has been reviewed, shared and used by multiple scientific communities. The ontology has been in use to support the data management of a number of large-scale ecological monitoring activities (observations) and empirical experiments.

Citations (10)

Summary

We haven't generated a summary for this paper yet.