Minimum Weight Flat Antichains of Subsets (1704.00067v4)
Abstract: Building on classical theorems of Sperner and Kruskal-Katona, we investigate antichains $\mathcal F$ in the Boolean lattice $B_n$ of all subsets of $[n]:={1,2,\dots,n}$, where $\mathcal F$ is flat, meaning that it contains sets of at most two consecutive sizes, say $\mathcal F=\mathcal{A}\cup\mathcal{B}$, where $\mathcal{A}$ contains only $k$-subsets, while $\mathcal{B}$ contains only $(k-1)$-subsets. Moreover, we assume $\mathcal{A}$ consists of the first $m$ $k$-subsets in squashed (colexicographic) order, while $\mathcal{B}$ consists of all $(k-1)$-subsets not contained in the subsets in $\mathcal{A}$. Given reals $\alpha,\beta>0$, we say the weight of $\mathcal F$ is $\alpha\cdot|\mathcal{A}|+\beta\cdot|\mathcal{B}|$. We characterize the minimum weight antichains $\mathcal F$ for any given $n,k,\alpha,\beta$, and we do the same when in addition $\mathcal F$ is a maximal antichain. We can then derive asymptotic results on both the minimum size and the minimum Lubell function.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.