Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Global Sobolev regularity for general elliptic equations of $p$-Laplacian type (1703.09918v1)

Published 29 Mar 2017 in math.AP

Abstract: We derive global gradient estimates for $W{1,p}_0(\Omega)$-weak solutions to quasilinear elliptic equations of the form $$ \mathrm{div\,}\mathbf{a}(x,u,Du)=\mathrm{div\,}(|F|{p-2}F) $$ over $n$-dimensional Reifenberg flat domains. The nonlinear term of the elliptic differential operator is supposed to be small-BMO with respect to $x$ and H\"older continuous in $u.$ In the case when $p\geq n,$ we allow only continuous nonlinearity in $u.$ Our result highly improves the known regularity results available in the literature. In fact, we are able not only to weaken the regularity requirement on the nonlinearity in $u$ from Lipschitz continuity to H\"older one, but we also find a very lower level of geometric assumptions on the boundary of the domain to ensure global character of the obtained gradient estimates.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube