Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Algorithmic interpretations of fractal dimension (1703.09324v1)

Published 27 Mar 2017 in cs.DS

Abstract: We study algorithmic problems on subsets of Euclidean space of low fractal dimension. These spaces are the subject of intensive study in various branches of mathematics, including geometry, topology, and measure theory. There are several well-studied notions of fractal dimension for sets and measures in Euclidean space. We consider a definition of fractal dimension for finite metric spaces which agrees with standard notions used to empirically estimate the fractal dimension of various sets. We define the fractal dimension of some metric space to be the infimum $\delta>0$, such that for any $\epsilon > 0$, for any ball $B$ of radius $r\geq 2\epsilon$, and for any $\epsilon $-net $N$ (that is, for any maximal $\epsilon $-packing), we have $|B\cap N|=O((r/\epsilon)\delta)$. Using this definition we obtain faster algorithms for a plethora of classical problems on sets of low fractal dimension in Euclidean space. Our results apply to exact and fixed-parameter algorithms, approximation schemes, and spanner constructions. Interestingly, the dependence of the performance of these algorithms on the fractal dimension nearly matches the currently best-known dependence on the standard Euclidean dimension. Thus, when the fractal dimension is strictly smaller than the ambient dimension, our results yield improved solutions in all of these settings.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Anastasios Sidiropoulos (45 papers)
  2. Vijay Sridhar (4 papers)
Citations (2)

Summary

We haven't generated a summary for this paper yet.