Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Light spanners for snowflake metrics (1401.5014v1)

Published 20 Jan 2014 in cs.CG and cs.DS

Abstract: A classic result in the study of spanners is the existence of light low-stretch spanners for Euclidean spaces. These spanners ahve arbitrary low stretch, and weight only a constant factor greater than that of the minimum spanning tree of the points (with dependence on the stretch and Euclidean dimention). A central open problem in this field asks whether other spaces admit low weight spanners as well - for example metric space with low intrinsic dimension - yet only a handful of results of this type are known. In this paper, we consider snowflake metric spaces of low intrinsic dimension. The {\alpha}-snowflake of a metric (X,{\delta}) is the metric (X,${\delta}{\alpha}$) for 0<{\alpha}<1. By utilizing an approach completely different than those used for Euclidean spaces, we demonstrate that snowflake metrics admit light spanners. Further, we show that the spanner is of diameter O($\log$n), a result not possible for Euclidean spaces. As an immediate corollary to our spanner, we obtain dramatic improvments in algorithms for the traveling salesman problem in this setting, achieving a polynomial-time approximation scheme with near-linear runtime. Along the way, we show that all ${\ell}_p$ spaces admit light spanners, a result of interest in its own right.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Lee-Ad Gottlieb (28 papers)
  2. Shay Solomon (55 papers)
Citations (5)

Summary

We haven't generated a summary for this paper yet.