Witt differentials in the h-topology (1703.08868v2)
Abstract: Recent important and powerful frameworks for the study of differential forms by Huber-Joerder and Huber-Kebekus-Kelly based on Voevodsky's h-topology have greatly simplified and unified many approaches. This article builds towards the goal of putting Illusie's de Rham-Witt complex in the same framework by exploring the h-sheafification of the rational de Rham-Witt differentials. Assuming resolution of singularities in positive characteristic one recovers a complete cohomological h-descent for all terms of the complex. We also provide unconditional h-descent for the global sections and draw the expected conclusions. The approach is to realize that a certain right Kan extension introduced by Huber-Kebekus-Kelly takes the sheaf of rational de Rham-Witt forms to a qfh-sheaf. As such, we state and prove many results about qfh-sheaves which are of independent interest.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Collections
Sign up for free to add this paper to one or more collections.