Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Negativity Bounds for Weyl-Heisenberg Quasiprobability Representations (1703.08272v2)

Published 24 Mar 2017 in quant-ph

Abstract: The appearance of negative terms in quasiprobability representations of quantum theory is known to be inevitable, and, due to its equivalence with the onset of contextuality, of central interest in quantum computation and information. Until recently, however, nothing has been known about how much negativity is necessary in a quasiprobability representation. Zhu proved that the upper and lower bounds with respect to one type of negativity measure are saturated by quasiprobability representations which are in one-to-one correspondence with the elusive symmetric informationally complete quantum measurements (SICs). We define a family of negativity measures which includes Zhu's as a special case and consider another member of the family which we call "sum negativity." We prove a sufficient condition for local maxima in sum negativity and find exact global maxima in dimensions $3$ and $4$. Notably, we find that Zhu's result on the SICs does not generally extend to sum negativity, although the analogous result does hold in dimension $4$. Finally, the Hoggar lines in dimension $8$ make an appearance in a conjecture on sum negativity.

Citations (23)

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.