Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 97 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 92 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Kimi K2 175 tok/s Pro
2000 character limit reached

On the Connectivity of Unions of Random Graphs (1703.07804v3)

Published 22 Mar 2017 in math.OC

Abstract: Graph-theoretic tools and techniques have seen wide use in the multi-agent systems literature, and the unpredictable nature of some multi-agent communications has been successfully modeled using random communication graphs. Across both network control and network optimization, a common assumption is that the union of agents' communication graphs is connected across any finite interval of some prescribed length, and some convergence results explicitly depend upon this length. Despite the prevalence of this assumption and the prevalence of random graphs in studying multi-agent systems, to the best of our knowledge, there has not been a study dedicated to determining how many random graphs must be in a union before it is connected. To address this point, this paper solves two related problems. The first bounds the number of random graphs required in a union before its expected algebraic connectivity exceeds the minimum needed for connectedness. The second bounds the probability that a union of random graphs is connected. The random graph model used is the Erd\H{o}s-R\'enyi model, and, in solving these problems, we also bound the expectation and variance of the algebraic connectivity of unions of such graphs. Numerical results for several use cases are given to supplement the theoretical developments made.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)