Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 78 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 89 tok/s Pro
Kimi K2 212 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Reconstructing the topology of the elementary self-embedding monoids of countable saturated structures (1703.07429v1)

Published 21 Mar 2017 in math.LO

Abstract: Every transformation monoid comes equipped with a canonical topology-the topology of pointwise convergence. For some structures, the topology of the endomorphism monoid can be reconstructed from its underlying abstract monoid. This phenomenon is called automatic homeomorphicity. In this paper we show that whenever the automorphism group of a countable saturated structure has automatic homeomorphicity and a trivial center, then the monoid of elementary self-embeddings has automatic homeomorphicity, too. As a second result we strengthen a result by Lascar by showing that whenever $\mathbf{A}$ is a countable $\aleph_0$-categorical $G$-finite structure whose automorphism group has a trivial center and if $\mathbf{B}$ is any other countable structure, then every isomorphism between the monoids of elementary self-embeddings is a homeomorphism.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.