Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Centralities of Nodes and Influences of Layers in Large Multiplex Networks (1703.05833v1)

Published 16 Mar 2017 in physics.soc-ph and cs.SI

Abstract: We formulate and propose an algorithm (MultiRank) for the ranking of nodes and layers in large multiplex networks. MultiRank takes into account the full multiplex network structure of the data and exploits the dual nature of the network in terms of nodes and layers. The proposed centrality of the layers (influences) and the centrality of the nodes are determined by a coupled set of equations. The basic idea consists in assigning more centrality to nodes that receive links from highly influential layers and from already central nodes. The layers are more influential if highly central nodes are active in them. The algorithm applies to directed/undirected as well as to weighted/unweighted multiplex networks. We discuss the application of MultiRank to three major examples of multiplex network datasets: the European Air Transportation Multiplex Network, the Pierre Auger Multiplex Collaboration Network and the FAO Multiplex Trade Network.

Citations (62)

Summary

We haven't generated a summary for this paper yet.