Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Functional Multiplex PageRank (1608.06328v2)

Published 22 Aug 2016 in physics.soc-ph and cs.SI

Abstract: Recently it has been recognized that many complex social, technological and biological networks have a multilayer nature and can be described by multiplex networks. Multiplex networks are formed by a set of nodes connected by links having different connotations forming the different layers of the multiplex. Characterizing the centrality of the nodes in a multiplex network is a challenging task since the centrality of the node naturally depends on the importance associated to links of a certain type. Here we propose to assign to each node of a multiplex network a centrality called Functional Multiplex PageRank that is a function of the weights given to every different pattern of connections (multilinks) existent in the multiplex network between any two nodes. Since multilinks distinguish all the possible ways in which the links in different layers can overlap, the Functional Multiplex PageRank can describe important non-linear effects when large relevance or small relevance is assigned to multilinks with overlap. Here we apply the Functional Page Rank to the multiplex airport networks, to the neuronal network of the nematode c.elegans, and to social collaboration and citation networks between scientists. This analysis reveals important differences existing between the most central nodes of these networks, and the correlations between their so called "pattern to success".

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Jacopo Iacovacci (13 papers)
  2. Christoph Rahmede (17 papers)
  3. Alex Arenas (106 papers)
  4. Ginestra Bianconi (136 papers)
Citations (51)

Summary

We haven't generated a summary for this paper yet.