Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Finite element procedures for computing normals and mean curvature on triangulated surfaces and their use for mesh refinement (1703.05745v1)

Published 16 Mar 2017 in math.NA

Abstract: In this paper we consider finite element approaches to computing the mean curvature vector and normal at the vertices of piecewise linear triangulated surfaces. In particular, we adopt a stabilization technique which allows for first order $L2$-convergence of the mean curvature vector and apply this stabilization technique also to the computation of continuous, recovered, normals using $L2$-projections of the piecewise constant face normals. Finally, we use our projected normals to define an adaptive mesh refinement approach to geometry resolution where we also employ spline techniques to reconstruct the surface before refinement. We compare or results to previously proposed approaches.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.