Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Privileged Coordinates and Nilpotent Approximation for Carnot Manifolds, II. Carnot Coordinates (1703.05494v3)

Published 16 Mar 2017 in math.DG and math.AP

Abstract: This paper is a sequel of arxiv:1709.09045 and deals with privileged coordinates and nilpotent approximation of Carnot manifolds. By a Carnot manifold it is meant a manifold equipped with a filtration by subbundles of the tangent bundle which is compatible with the Lie bracket of vector fields. In this paper, we single out a special class of privileged coordinates in which the nilpotent approximation at a given point of a Carnot manifold is given by its tangent group. We call these coordinates Carnot coordinates. Examples of Carnot coordinates include Darboux coordinates on contact manifolds and the canonical coordinates of the first kind of Goodman and Rothschild-Stein. By converting the privileged coordinate of Bella\"iche into Carnot coordinates we obtain an effective construction of Carnot coordinates, which we call $\varepsilon$-Carnot coordinates. They form the building block of all systems of Carnot coordinates. On a graded nilpotent Lie group they are given by the group law of the group. For general Carnot manifolds, they depend smoothly on the base point. Moreover, in Carnot coordinates at a given point, they are osculated in a very precise manner by the group law of the tangent group at the point.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.