Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Model tree based adaption strategy for software effort estimation by analogy (1703.04566v1)

Published 11 Mar 2017 in cs.SE

Abstract: Background: Adaptation technique is a crucial task for analogy based estimation. Current adaptation techniques often use linear size or linear similarity adjustment mechanisms which are often not suitable for datasets that have complex structure with many categorical attributes. Furthermore, the use of nonlinear adaptation technique such as neural network and genetic algorithms needs many user interactions and parameters optimization for configuring them (such as network model, number of neurons, activation functions, training functions, mutation, selection, crossover, ... etc.). Aims: In response to the abovementioned challenges, the present paper proposes a new adaptation strategy using Model Tree based attribute distance to adjust estimation by analogy and derive new estimates. Using Model Tree has an advantage to deal with categorical attributes, minimize user interaction and improve efficiency of model learning through classification. Method: Seven well known datasets have been used with 3-Fold cross validation to empirically validate the proposed approach. The proposed method has been investigated using various K analogies from 1 to 3. Results: Experimental results showed that the proposed approach produced better results when compared with those obtained by using estimation by analogy based linear size adaptation, linear similarity adaptation, 'regression towards the mean' and null adaptation. Conclusions: Model Tree could form a useful extension for estimation by analogy especially for complex data sets with large number of categorical attributes.

Citations (19)

Summary

We haven't generated a summary for this paper yet.