Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Predictability of large-scale atmospheric motions: Lyapunov exponents and error dynamics (1703.04284v1)

Published 13 Mar 2017 in nlin.CD

Abstract: The deterministic equations describing the dynamics of the atmosphere (and of the climate system) are known to display the property of sensitivity to initial conditions. In the ergodic theory of chaos this property is usually quantified by computing the Lyapunov exponents. In this review, these quantifiers computed in a hierarchy of atmospheric models (coupled or not to an ocean) are analyzed, together with their local counterparts known as the local or finite-time Lyapunov exponents. It is shown in particular that the variability of the local Lyapunov exponents (corresponding to the dominant Lyapunov exponent) decreases when the model resolution increases. The dynamics of (finite-amplitude) initial condition errors in these models is also reviewed, and in general found to display a complicated growth far from the asymptotic estimates provided by the Lyapunov exponents. The implications of these results for operational (high resolution) atmospheric and climate modelling are also discussed.

Citations (46)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)

X Twitter Logo Streamline Icon: https://streamlinehq.com