Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 86 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 15 tok/s
GPT-5 High 16 tok/s Pro
GPT-4o 102 tok/s
GPT OSS 120B 467 tok/s Pro
Kimi K2 188 tok/s Pro
2000 character limit reached

Overcoming the Sign Problem at Finite Temperature: Quantum Tensor Network for the Orbital $e_g$ Model on an Infinite Square Lattice (1703.03586v2)

Published 10 Mar 2017 in cond-mat.str-el, cond-mat.stat-mech, cond-mat.supr-con, and quant-ph

Abstract: The variational tensor network renormalization approach to two-dimensional (2D) quantum systems at finite temperature is applied for the first time to a model suffering the notorious quantum Monte Carlo sign problem --- the orbital $e_g$ model with spatially highly anisotropic orbital interactions. Coarse-graining of the tensor network along the inverse temperature $\beta$ yields a numerically tractable 2D tensor network representing the Gibbs state. Its bond dimension $D$ --- limiting the amount of entanglement --- is a natural refinement parameter. Increasing $D$ we obtain a converged order parameter and its linear susceptibility close to the critical point. They confirm the existence of finite order parameter below the critical temperature $T_c$, provide a numerically exact estimate of~$T_c$, and give the critical exponents within $1\%$ of the 2D Ising universality class.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.