Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 85 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 10 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 455 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

When Hashes Met Wedges: A Distributed Algorithm for Finding High Similarity Vectors (1703.01054v1)

Published 3 Mar 2017 in cs.SI, cs.DC, and cs.DS

Abstract: Finding similar user pairs is a fundamental task in social networks, with numerous applications in ranking and personalization tasks such as link prediction and tie strength detection. A common manifestation of user similarity is based upon network structure: each user is represented by a vector that represents the user's network connections, where pairwise cosine similarity among these vectors defines user similarity. The predominant task for user similarity applications is to discover all similar pairs that have a pairwise cosine similarity value larger than a given threshold $\tau$. In contrast to previous work where $\tau$ is assumed to be quite close to 1, we focus on recommendation applications where $\tau$ is small, but still meaningful. The all pairs cosine similarity problem is computationally challenging on networks with billions of edges, and especially so for settings with small $\tau$. To the best of our knowledge, there is no practical solution for computing all user pairs with, say $\tau = 0.2$ on large social networks, even using the power of distributed algorithms. Our work directly addresses this challenge by introducing a new algorithm --- WHIMP --- that solves this problem efficiently in the MapReduce model. The key insight in WHIMP is to combine the "wedge-sampling" approach of Cohen-Lewis for approximate matrix multiplication with the SimHash random projection techniques of Charikar. We provide a theoretical analysis of WHIMP, proving that it has near optimal communication costs while maintaining computation cost comparable with the state of the art. We also empirically demonstrate WHIMP's scalability by computing all highly similar pairs on four massive data sets, and show that it accurately finds high similarity pairs. In particular, we note that WHIMP successfully processes the entire Twitter network, which has tens of billions of edges.

Citations (17)

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.